Contents |
Authors:
Musa A. Subeh, Head of Accounting Section, Bethlehem Municipality, Palestine
Hanna Yarovenko, PhD, Associate Professor of the Economic Cybernetics Department, Sumy State University, Ukraine
Pages: 87-95
DOI: 10.21272/fmir.1(4).87-95.2017
Download: |
Views: |
Downloads: |
|
|
|
Abstract
The article is devoted to the expediency of using the data mining and the construction of the neural network for the evaluation of transactions with card accounts for detecting attempts of frauds. The authors proposed a scheme for customer interaction with the bank when transaction is performing with the payment cards. The process is carried out using the verification module with data mining. The article was built a neural network with using software “Statistica”. The authors selected a data set that contains amounts of transaction, time intervals, fraud identifiers. As a result, it was got a multilayer perceptron with nine inputs, five hidden neurons and two outputs that can be used to predict an attempt at fraud with card accounts of bank clients.
Keywords: bank, fraud, credit card, data mining, modeling, neural network, Statistica.
JEL Classification: C45, D85, G21, L86.
Cite as: A. Subeh M., Yarovenko H. (2017).Data Mining of Operations with Card Accounts of Bank Clients. Financial Markets, Institutions and Risks, 1(4), 87-95. DOI: 10.21272/fmir.1(4).87-95.2017
References
- Bazy`lenko A. (2017). U 2016-mu shaxrayi vkraly` z raxunkiv ukrayinciv majzhe 340 mln grn. [In 2016, scammers stole from the accounts of Ukrainians almost 340 million UAH]. Retrieved from: http://watcher.com.ua/2017/02/07/u-2016-mu-shahrayi-vkraly-z-rahunkiv-ukrayintsiv-mayzhe-340-mln-hrn/.
- “Kartkovi” shaxrayi zavdaly` bankam 180 mil`joniv gry`ven` zby`tkiv. (2016). [“Card” fraudsters have caused banks UAH 180 million in losses]. Retrieved from: https://www.epravda.com.ua /news/2016/02/26/583169/
- Roman K. (2017). Vterly`sya v doviru: yak shaxrayi znimayut` groshi z bankivs`ky`x kartok ukrayinciv. Ukrayina. [Faithful: how fraudsters take money from bank cards of Ukrainians]. Retrieved from: https://daily.rbc.ua/ukr/show/moshenniki-snimayut-dengi-bankovskih-kart-1500294135.html
- Ryabuxa O. (2017). Nova sxema shaxrajstva. Pid udarom kliyenty` Pry`vatBanku i ne til`ky`. Minfin. [he new scheme of fraud. Under the blow, clients of PrivatBank and not only]. Retrieved from: https://minfin.com.ua/ua/2017/11/16/30965613/
- Levkovich-Maslyuk L. (2007). Velikie raskopki i velikie vyizovyi. Kompyuternyiy poisk znaniy stanovitsya vse bolee tsennyim. [Great excavations and great challenges. Computer search of knowledge becomes more valuable], 11(679), 48-51.
- Yarovenko G.M. (2015). Modelyuvannya ymovirnosti viniknennya shahrayskih operatsIy z kreditnimi kartkami. ZbIrnik naukovih prats “Problemi i perspektivi rozvitku bankIvskoii sistemi”. [Simulation of the probability of fraudulent transactions with credit cards / G.M. Yarovenko, AV Korkishko / / Collection of scientific works “Problems and prospects of development of the banking system”], 41, 237-248.
- Ivanov S.V. (2014). Preimuschestva geneticheskih algoritmov i ih primenenie v meditsine. Aktualnyie problemyi gumanitarnyih i estestvennyih nauk. [Advantages of genetic algorithms and their application in medicine. Actual problems of humanitarian and natural sciences], 10, 44-47.
- Preimuschestva neyronnyih setey (2016) Portal iskusstvennogo intellekta. [Advantages of neural networks. Portal of artificial intelligence]. Retrieved from: http://www.aiportal.ru/articles/neural-networks/ advantages.html.
- STATISTICA Automated Neural Networks (SANN) – Neural Networks: An Overview. Retrieved from: Portal StatSoft. http://documentation.statsoft.com/STATISTICAHelp.aspx?path=SANN/ Overview/ SANNNeural NetworksAnOverview
- Berthold M., Hand D.J. (2003). Intelligent Data Analysis: An Introduction / M. Berthold, D.J. Hand. – Springer-Verlag Berlin Heidelberg, 515.
|