
Зміст |
Автори:
Людмила Кіріченко, доктор технічних наук, професор кафедри прикладної математики, Харківський національний університет радіоелектроніки, Україна
Тамара Радівілова, кандидат технічних наук, доцент, кафедра інфокомунікації, Харківський національний університет радіоелектроніки, Україна
Карлсон Андерс, викладач кафедри комп’ютерних наук та інженерії, Блекінге, Технологічний інститут, Швеція
Сторінки: 20-34
DOI: 10.21272/sec.2017.1-03
Завантажити: |
Перегляди: |
Завантаження: |
|
|
|
Розширена анотація українською мовою
У цій статті представлено короткий огляд основних методів аналізу соціальних мереж, які використовуються для виявлення кібер-загроз. Розглядаються основні типи кібер-загроз: загрози соціальної інженерії, витік інформації і компрометація поведінки співробітників компанії; підбурювання до расової, етнічної або релігійної ненависті, пропаганда тоталітарних сект та інші. Показано основні методи протидії: виявлення та запобігання інформаційних атак, визначення вузлів, з яких виконується атака, оптимальне розміщення сигнальних точок, формування і руйнування різних мереж соціальної інформації, виявлення спільнот зловмисників, таких як терористи, відстеження шкідливої діяльності. Розглянуто різні підходи до аналізу соціальних мереж: структурний, де основна увага приділяється геометричній формі мережі та інтенсивності взаємодій; ресурсний, який диференціює учасників, що знаходяться в ідентичних структурних позиціях соціальної мережі, за їх ресурсами; розгляд контенту мережі – аналіз загальної, текстової та мультимедійної інформації ; нормативний підхід, який вивчає рівень довіри між учасниками; динамічний підхід – напрямок у вивченні соціальних мереж, в якому об’єктами досліджень є зміни в мережевій структурі з часом. Описуються основні методи теорії графів, що застосовуються в аналізі соціальних мереж. Графові моделі соціальних мереж використовуються для моделювання економічних і комунікаційних зв’язків людей, аналізу процесів поширення інформації, знаходження спільнот і пов’язаних підгруп, на які можна розбити всю соціальну мережу. Значна увага приділена методам аналізу центральності вершин графа, які дозволяють визначити відносну важливість учасника у рамках конкретної мережі. Показано, що видобування даних у соціальних мережах є однією з найважливіших тем сучасних досліджень. Розглянуто методи видобування даних, які застосовуються до аналізу соціальних мереж такі як класифікація, кластеризація, асоціація, прогнозування та візуалізація. Розглядаються типові завдання безпеки аналізу соціальних мереж, такі як виявлення спільноти в мережі, виявлення лідерів спільнотах, експертів із аналізу роботи в соціальних мережах, аналіз стійкості спільності в часі, прогнозування формування зв’язків, кластеризація текстової інформації та ін.
Ключові слова: аналіз соціальної мережі, виявлення даних, загрози, безпека соціальних мереж.
Класифікація JEL: С38, С45, С55, С61, С63.
Цитувати як: Kirichenko, L., Radivilova, T., Anders, C. (2017). Detecting cyber threats through social network analysis: short survey SocioEconomic Challenges, 1(1), 20-34. http://doi.org/10.21272/sec.2017.1-03.
Список використаних джерел
- Aggarwal, C., Karthik, S. (2014). Evolutionary Network Analysis: A Survey. ACM Computing Surveys, 47(1), Article 10.
- Aggarwal, C. (2011). Introduction to social network data analytics. Springer US. Retrieved from doi: 10.1007/978-1-4419-8462-3
- Ajay Kumar Singh Kushwah, Amit Kumar Manjhvar (2016). A Review on Link Prediction in Social Network. International Journal of Grid and Distributed Computing, 9(2), 43-50.
- Ant colony optimization algorithms. Retrieved from https://en.wikipedia.org/wiki/Ant_colony_optimiza-tion_algorithms. Accessed 07 March 2017.
- Batura, T.V. (2013). Modeli i metody analiza komp’yuternykh sotsial’nykh setey [Models and methods of analysis of computer social networks]. International Journal Programmnye Produkty i Sistemy, 3, 130-137.
- Bonchi, F., Castillo, C., Gionis, A., Jaimes, A. (2011). Social Network Analysis and Mining for Business Applications, ACM TIST, 2(3), 22-58.
- Bonchi, F., Castillo, C., Jaimes, A. (2011). Social network analysis and mining for business applications. ACM Trans Intell. Syst. Technol, 2(3), 1-37.
- Buzun, N., Korshunov, A. (2012). Vyiavlenie peresekayuschihsya soobschestv v socialnyh setyah [Identifying overlapping communities in social networks]. Moscow, 18 p.
- Carley, K., Lee, J., Krackhardt, D. (2002). Destabilizing networks. Connections, 24(3), 79-92.
- Carnes, T., Nagarajan, R., Wild, S.M., Van Zuylen, A. (2007). Maximizing influence in a competitive social network: a follower’s perspective. Proceedings of the ninth international conference on electronic commerce, Minneapolis, USA, 351-360.
- Center for Computational Analysis of Social and Organizational Systems. Retrieved from http://www.casos.cs.cmu.edu/. Accessed 07 March 2017.
- Chakrabarti, S. (2002). Mining the web. Discovery knowledge from hypertext data. Morgan Kaufmann, 344 p.
- Charu, C. (2012). Social network data analytics. Springer Science & Business Media, 486 p.
- Churakov, A.N. ( 2001). Analiz socialnyh setey [Analysis of social networks]. Social Studies, 1, 109-121.
- Cortizo, J., Carrero, F., Gomez, J., Monsalve, B., Puertas, E. (2009). Introduction to Mining SM. Proceedings of the 1st International Workshop on Mining SM, 1-3.
- Coscia, M., Giannotti, F., Pedreschi, D. (2011). A classification for community discovery methods in complex networks. Statistical Analysis and Data Mining, 512-546.
- Data mining. Retrieved from https://en.wikipedia.org/wiki/Data_mining. Accessed 07 March 2017.
- Dodds, P.S., Watts, D.J. (2005). A generalized model of social and biological contagion. Journal of Theoretical Biology, 4, 587-604.
- Dodonov, A.G., Lande, D.V., Prischepa, V.V., Putyatin, V.G. (2013). Konkurentnaya razvedka v komp’yuternykh setyakh [Competitive intelligence in computer networks]. Кyiv: IPRI NAS Ukraine, 248 p.
- Dodonov, A.G., Lande, D.V., Putyatin, V.G. (2009). Ínformatsíyní potoki v global’nykh komp’yuternykh me-rezhakh [Information flows in global computer networks]. Кyiv: Naukova Dumka, 295 p.
- Dodonov, A.G., Lande, D.V., Putyatin, V.G. (2014). Komp’yuternyye seti i analiticheskiye issledovaniya [Computer networks and analytical studies]. Кyiv: IPRI NAS of Ukraine, 486 p.
- Dodonov, O.G., Gorbachik, O.S., Kuznetsova, M.G. (2003). Informatsiyne suspil’stvo: tekhnolohii ta bezpeka [Information security: technology and security]. Information and open government as a means of democrati-zation of society: Coll. material “round table”, 119-124.
- Dokuka, S.V., Valeeva, D.R. (2015). Statisticheskie modeli dlya analiza dinamiki socialnyh setey v issledo-vaniyah obrazovaniya [Statistical Models for the Analysis of the Dynamics of Social Networks in Education Studies]. Education Issues, 1, 201-213.
- Dzyundzyuk, V.B. (2011). Virtual’ni spivtovarystva: potentsiyna zahroza dlya natsionalʹnoyi bezpeky [Virtual communities: potential threat to national security]. State building: Electronic publication, 1.
- Easley, D., Kleinberg, J. (2010). Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 819 p.
- Ehrlich, K., Carboni, I. (2005). Inside Social Network Analysis IBM Watson Research Center. New York, USA, Technical Report, 5-10.
- Flake, G.W., Lawrence, S., Giles C.L., Coetzee, F.M. (2002). Self-organization and identification of Web communities. Computer, 3, 66-70.
- Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3-5), 75-174.
- Free and Open Source Social Network Analysis Software. Retrieved from http://www.butleranalyt-ics.com/20-free-and-open-source-social-network-analysis-software/. Accessed 07 March 2017.
- Girvan, M., Newman, M.E. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 12, 7821-7826.
- Goyal, A., Bonchi, F., Laks, Lakshmanan, V.S. (2008). Discovering leaders from community actions. Pro-ceedings of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, California, USA, 499-508.
- Greenhow, C. (2011). Online social networks and learning. On the Horizon, 19(1), 4-12.
- Grigor’yev A.N., Lande, D.V., Borodenkov, S.A., Mazurkevich, R.V., Pats’ora, V.N. (2007). InfoStream. Monitoring novostey iz Interneta: tekhnologiya, sistema, servis, [Monitoring of news from the Internet: technology, system, service]. Kyiv: OOO “Start-98”, 40 p.
- Grinenko, І., Prokof’eva-Yanchilenko, D. (2012). Vplyv virtual’nykh spil’not na informatsiynu bezpeky: suchasnyy stan ta tendentsii rozvytku [Influence of virtual communities for information security: current situation and trends]. Legal, regulatory and metrological support of information security in Ukraine, 1(23), 18-23.
- Gubanov, D.A., Novikov, D.A., Chartishvili, A.G. (2010). Socialnye seti: modeli informacionnogo vliyaniya, upravleniya i protivobotstva [Social networks: informational influence, management and con-tention models]. Monograph, Moscow, 228 p.
- Gyöngyi, Z., Garcia-Molina, H., Pedersen, J. (2004). Combating Web Spam with TrustRank. Proceedings of the International Conference on Very Large Data Bases, 30, 576-587.
- Hanneman, R. (1988). Computer-Assisted Theory Building: Modeling Dynamic Social Systems. Riverside, University of California, 343 p.
- Hanneman, R., Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California. Retrieved from http://faculty.ucr.edu/~hanneman/nettext. Accessed 07 March 2017.
- Hoppe, B., Reinelt, C. (2010). Social Network. Analysis and the Evaluation of Leadership Networks. The Leadership Quarterly, 4, 600-619.
- Horbulin, V.P., Dodonov, O.H., Lande, D.V. (2009). Informatsiyni operatsiyi ta bezpeka suspilʹstva: zahrozy, protydiya, modelyuvannya: monohrafiya [Information operations and safety of society: the threat, resistance, modeling: monograph]. Intertekhnolohiya, 164 p.
- International Network for Social Network Analysis. Retrieved from http://www.insna.org/# . Accessed 07 March 2017.
- Jackson, Matthew O. (2010). An Overview of Social Networks and Economic Applications. Handbook of Social Economics. Retrieved from https://web.stanford.edu/~jacksonm/socialnetecon-chapter.pdf. Accessed 07 March 2017.
- Johnson, J., Ironsmith, M. (1994). Assessing Children’s Sociometric Status: Issues and the Application of So-cial Network Analysis. Journal of Group Psychotherapy, Psychodrama & Sociometry, 47(1), 36-49.
- Kempe, D., Kleinberg, J., Tardos, É. (2003). Maximizing the spread of influence through a social network. Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, Washington, USA, 137-146.
- Key Trends to Watch in Gartner 2012 Emerging Technologies Hype Cycle. Retrieved from http://www.forbes.com/sites/gartnergroup/2012/09/18/key-trends-to-watch-in-gartner-2012-emerging-tech-nologies-hype-cycle-2. Accessed 07 March 2017.
- Kolomeychenko, M.I., Chepovskiy, A.A., Chepovskiy, A.M. (2014). Algoritm vydeleniya soobschestv v socialnyhsetyah [An algorithm for detecting communities in social networks], Fundamental and Applied Math-ematics, 19(1), 21-32.
- Koren, Y. (2003). On Spectral Graph Drawing. Proceedings of the 9th International Computing and Combinatorics Conference, Springer, 496-508.
- Kumar, R., Novak, J., Raghavan, P., Tomkins, A. (2004). Structure and Evolution of Blogspace Commun. ACM, 47(12), 35-39.
- Lande, D.V. (2005). Poiskznaniy v Internet. Professional’naya rabota [Search of knowledge on the Internet. Professional work]. Moscow: Dialectics, 272 p.
- Lande, D.V. (2006). Osnovy integratsii informatsionnykh potokov: monografiya [Fundamentals of the inte-gration of information flows: monograph]. Кyiv: Engineering, 240 p.
- Lande, D.V. (2014). Elementy komp’yuternoyi linhvistyky v pravoviyi nformatytsi [Elements of Computational Linguistics in the Legal Information]. Кyiv: NDIIP NAPrN Ukraine, 168 p.
- Lande, D.V., Furashev, V.N., Braichevsky, S.M., Grigoriev, A.N. (2006). Osnovy modelirovaniya I otsenki elektronnykh informatsionnykh potokov: monografiya [Fundamentals of modeling and evaluation of electronic information flows: monograph]. Кyiv: Engineering, 176 p.
- Lande, D.V., Snarskii, A.A., Bessudnov, I.V. (2009). Internetika: Navigatsiya v slozhnykh setyakh: modeli i algoritmy [Internetics: Navigation in complex networks: models and algorithms]. Moscow: The Libricom Book House, 264 p.
- Langville, Amy N., Meyer, Carl D. (2006). Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, 224 p.
- Leskovec, J., Kleinberg, J., Faloutsos, C. (2005). Graphs over time: densification laws, shrinking diameters and possible explanations. Proc. 11th ACM SIGKDD Intern. Conf. on Knowledge Discovery in Data Mining, NY, 177-187.
- Liben-Nowell, D., Kleinberg, J. (2003). The Link Prediction Problem for Social Networks. Proceedings of the 12th International Conference on Information and Knowledge Management, NY: ACM Press, 556-559.
- List of social networking websites. Retrieved from https://en.wikipedia.org/wiki/List_of_social_network-ing_websites. Accessed 07 March 2017.
- Mona Jalal, An Hay Doan. A Survey on Community Mining in Social Networks. Retrieved from http://monajalal.github.io/assets/pdf/CS784_report.pdf. Accessed 07 March 2017.
- Mariam Adedoyin-Olowe, Mohamed Medhat Gaber, Frederic Stahl (2014). A Survey of Data Mining Tech-niques for Social Network Analysis. Journal of Data Mining & Digital Humanities, 1-25.
- Mason, W.A., Conrey, F.R., Smith, E.R. (2007). Situating social influence processes: dynamic, multidirec-tional flows of influence within social networks. Official journal of Society for Personality and Social Psychology, 11, 279-300.
- Matthew A. Russell (2011). Mining the Social Web: Analyzing Data from Facebook,Twitter, LinkedIn, and Other Social Media Sites. O’Reilly, 332 p.
- Matvienko, Yu.A. Destruktivnyye setevyye sotsial’nyye struktury kak sredstvo informatsionnoy voyny i ugroza bezopasnosti Rossii [Destructive network social structures as a means of information warfare and a threat to Russia’s security]. Retrieved from http://old.geopolitica.ru/Articles/1218. Accessed 07 March 2017.
- Metody klassifikatsii i prognozirovaniya. Metod opornykh vektorov. Metod “blizhayshego soseda”. Bayye-sovskaya klassifikatsiya [Methods of classification and forecasting. Support vector method. The “nearest neighbor” method. Bayesian classification]. Retrieved from http://www.intuit.ru/studies/courses/6/6/lec-ture/176. Accessed 07 March 2017.
- Metody klasternogo analiza. Iyerarkhicheskiye metody [Methods of cluster analysis. Hierarchical methods]. Retrieved from http://www.intuit.ru/studies/courses/6/6/lecture/182. Accessed 07 March 2017.
- Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. Retrieved from https://arxiv.org/pdf/1301.3781.pdf. Accessed 07 March 2017.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J. (2013). Distributed Representations of Words and Phrases and their Compositionality. Retrieved from https://papers.nips.cc/paper/5021-distributed-representa-tions-of-words-and-phrases-and-their-compositionality.pdf. Accessed 07 March 2017.
- Mohammad Al Hasan, Mohammed J. Zaki (2011). A Survey of Link Prediction in Social Networks. Social Network Data Analytics, 243-275.
- National Cyber Security Strategy 2016-2021 for United Kingdom. Retrieved from https://www.gov.uk/gov-ernment/uploads/system/uploads/attachment_data/file/564268/national_cyber_security_strategy.pdf. Accessed 07 March 2017.
- National cyber security strategy for Ukraine. Retrieved from http://www.president.gov.ua/documents/962016-19836. Accessed 07 March 2017.
- NetLab. Retrieved from http://groups.chass.utoronto.ca/netlab/. Accessed 07 March 2017.
- Orgnet: Social Network Analysis Software & Services for Organizations, Communities, and Their Consult-ants. Retrieved from http://www.orgnet.com/index.html. Accessed 07 March 2017.
- Palo Alto Networks. Top 10 social networking threats. Retrieved from http://www.networkworld.com/arti-cle/2213704/collaboration-social/top-10-social-networking-threats.html. Accessed 07 March 2017.
- Peleshchyshyn, A.M. Syerov, Yu.O., Berezko, O.L., Peleshchyshyn, O.P., Tymovchak-Maksymets’, O.Yu., Markovets, O.V. (2012). Protsesy upravlinnya interaktyvnymy sotsialʹnymy komunikatsiyamy v umovakh rozvytku informatsiynoho suspil’stva: monohrafiya [Management processes interactive social communication in the development of the information society: monograph]. Lviv, Lviv Polytechnic National University Publishing House, 368 p.
- Peleshchyshyn, O.P. (2013). Analiz ta protydiya zahrozam marketynhoviy pozytsiyi pidpryyemstva v onlayn-spil’notakh [Analysis and resistance threats marketing position of the company in the online community]. In-formation Security, 3(15), 217-224.
- Peleshchyshyn, O.P. (2010). Informatsiyni tekhnolohiyi obliku ta poshuk onlayn-spil’not u zadachi sotsial’noho marketynhu [Industry Accounting and search online communities in the task of social marketing]. Proceedings of the National University “Lviv Polytechnic”, Economic Series, 44, 50-59.
- Principal component analysis. Retrieved from https://en.wikipedia.org/wiki/Principal_component_analysis. Accessed 07 March 2017.
- Ramos, J. (2003). Using tf-idf to determine word relevance in document queries. Proceedings of the first in-structional conference on machine learning.
- Saoussen Aouay, Salma Jamoussi, Faiez Gargouri, Ajith Abraham (2014). Modeling Dynamics of Social Net-works: A Survey. Sixth International Conference on Computational Aspects of Social Networks (CASoN), 49-53.
- Shantanu Ghosh (2011). Top seven social media threats. Retrieved from http://www.computer-weekly.com/tip/Top-seven-social-media-threats. Accessed 07 March 2017.
- Slabchenko, O.O., Sidorenko, V.N., Ponomarchuk, R.A. (2013). Metody i algoritmy vyiavleniya soobschestv potencialnyh abiturientov i ih liderov v socialnyh setyah [Methods and algorithms for identifying communities of potential applicants and their leaders in social networks]. Bulletin of National University of Kremenchuk, 1(78), 53-61.
- Smirnov, A.I., Grigoriev, V.R., Kokhtyulin, I.N., Kuroyedov, B.V., Sandarov, O.V. (2014). Global’naya be-zopasnost’ v tsifrovuyu epokhu: stratagem dlya Rossii [Global security in the digital age: stratagems for Rus-sia]. Moscow: All-Russian Research Institute of Geosystems, 394 p.
- Social network analysis software. Retrieved from https://en.wikipedia.org/wiki/Social_network_analysis_soft-ware. Accessed 07 March 2017.
- Software for social network analysis. Retrieved from https://www.gmw.rug.nl/~huisman/sna/software.html. Accessed 07 March 2017.
- Statistics and facts about social media usage. Retrieved from https://www.statista.com/topics/1164/social-net-works/. Accessed 07 March 2017.
- Stohl, C., Stohl, M. (2007). Networks of Terror: Theoretical Assumptions and Pragmatic Consequences. Com-munication Theory, 17, 93-124.
- Tantipathananandh, C., Berger-Wolf, T., Kempe, D. (2007). A framework for community identification in dynamic social networks. Proc. 13th ACM SIGKDD Intern. Conf. on Knowledge Discovery and Data Mining, NY, 717–726.
- The Global Risks Report 2017, 12th Edition. Retrieved from http://www3.weforum.org/docs/GRR17_Report_web.pdf. Accessed 07 March 2017.
- The International Survey Center conducts research on social, economic and political issues using survey data from large, representative national samples from many nations. Retrieved from http://internationalsurvey.org/. Accessed 07 March 2017.
- The NATO Cooperative Cyber Defence Centre. Retrieved from https://ccdcoe.org/cyber-security-strategy-documents.html. Accessed 07 March 2017.
- Top 15 Most Popular Social Networking Sites (and 10 Apps!). Retrieved from https://www.dreamgrow.com/top-15-most-popular-social-networking-sites/. Accessed 07 March 2017.
- Top 30 Social Network Analysis and Visualization Tools. Retrieved from http://www.kdnug-gets.com/2015/06/top-30-social-network-analysis-visualization-tools.html. Accessed 07 March 2017.
- Travelling salesman problem. Retrieved from https://en.wikipedia.org/wiki/Travelling_salesman_problem. Accessed 07 March 2017.
- Tymovchak-Maksymets, O. (2010). Metody vykorystannya rozshyrenykh mozhlyvostey hlobal’nykh posh-ukovykh system v zadachi poshuku spozhyvats’koho dosvidu v onlayn seredovyshchakh [Methods of using the advanced features of global search engines of search consumer experience in online media]. Proceedings of the National University “Lviv Polytechnic”: Information Systems and Networks, 689, 323-331.
- Ukustov, S.S., Kravets, A.G. (2012). Podkhod k resheniyu zadachi identifikatsii vliyatel’nykh razrabotchikov v sotsial’noy seti gitkhab [Approach to solving the problem of identifying influential developers in the social network of github]. Proceedings of the Volgograd State Technical University, 15(102), 61-66.
- Wang H. (2014). Introduction to Word2vec and its application to find predominant word senses. Retrieved from http://compling.hss.ntu.edu.sg/courses/hg7017/pdf/word2vec%20and%20its%20application%20to%20 wsd.pdf. Accessed 07 March 2017.
- Watts, D.J., Dodds, P.S. (2007). Influentials, Networks, and Public Opinion Formation. Journal of Consumer Research, 4, 441-458.
- White Paper on German Security Policy and the Future of the Bundeswehr. Retrieved from https://www.bun-deswehr.de/resource/resource/MzEzNTM4MmUzMzMyM-mUzMTM1MzMyZTM2MzIzMDMwMzAzMDMwMzAzMDY5NzE3MzM1Njc2NDYyMzMyMDI-wMjAyMDIw/2016%20White%20Paper.pdf. Accessed 07 March 2017.
- Yu, M., Dredze, M. (2014). Improving lexical embeddings with semantic knowledge. Association for Computational Linguistics (ACL), 545-550.
|